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TaE principal object of the present Memoir is the establishment of the partial differ-
ential equation of the third order satisfied by the parameter of a family of surfaces
belonging to a triple orthogonal system. It was first remarked by Bovquer that a given
family of surfaces does not in general belong to an orthogonal system, but that (in order
to its doing so0) a condition must be satisfied; it was afterwards shown by SerreT that
the condition is that the parameter, considered as a function of the coordinates, must
satisfy a partial differential equation of the third order: this equation was not obtained
by him or the other French geometers engaged on the subject, although methods of
obtaining it, essentially equivalent but differing in form, were given by DarBoux and
Levy; the last-named writer even found a particular form of the equation, viz. what the
general equation becomes on writing therein X=0, Y=0 (X, Y, Z the first derived

functions, or quantities proportional to the cosine-inclinations of the normal). Using

Lrvy’s method, I obtained the general equation, and communicated it to the French
Academy. My result was, however, of a very complicated form, owing, as I afterwards
discovered, to its being encumbered with the extraneous factor X*4Y?4-72; I succeeded,
by some difficult reductions, in getting rid of this factor, and so obtaining the equation
in the form given in the present memoir, viz.
(A), (B), (C), (F), (G), (H)Xda, 8, dc, 20f, 28g, 23h)
—2((A), (B), (C), (F), (G), (H)Xa, b, ¢, 2f, 2g, 2h)=0:
but the method was an inconvenient one, and I was led to reconsider the question. The
present investigation, although the analytical transformations are very long, is in theory
extremely simple: I consider a given surface, and at each point thereof take along the
normal an infinitesimal length ¢ (not a constant, but an arbitrary function of the
coordinates), the extremities of these distances forming a new surface, say the vicinal
surface; and the points on the same normal being considered as corresponding points, say
this is the conormal correspondence of vicinal surfaces. In order that the two surfaces
may belong to an orthogonal system, it is necessary and sufficient that at each point of
the given surface the principal tangents (tangents to the curves of curvature) shall
correspond to the principal tangents at the corresponding point of the vicinal surface;
and'the condition for thisis that ¢ shall satisfy a partial differential equation of the

second order,
((A), (B), (C), (¥), (G), (H)Xd., d,, d.)¢=0,
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230 PROFESSOR CAYLEY ON CURVATURE AND ORTHOGONAL SURFACES.

where the coefficients depend on the first and second differential coefficients of U, if
U=0 is the equation of the given surface. Now, considering the given surface as
belonging to a family, or writing its equation in the form r—7(z, 7, 2)=0 (the last »
a functional symbol), the condition in order that the vicinal surface shall belong to this

family, or say that it shall coincide with the surface r—+3r—n(z, 3, 2)=0, is g:%, where

V=o/XP+ Y2+ 7% if X, Y, 7Z are the first differential coefficients of 7(z, 7, z), that
is, of the parameter r considered as a function of the coordinates; we have thus the
equation

((A): (B), (C), (), (G), ()X, d,, d.)'5=0,

viz. the coefficients being functions of the first and second differential coefficients of 7,
and V being a function of the first differential coefficients of 7, this is in fact a relation
involving the first, second, and third differential coefficients of 7, or it is the partial
differential equation to be satisfied by the parameter r considered as a function of the
coordinates. After all reductions, this equation assumes the form preﬁously mentioned.

On the Curvature of Surfaces. Article Nos. 1 to 21.

1. Curvatureis a metrical theory having reference to the circle at infinity; each point
in space may be regarded as the vertex of a cone passing through this circle, say the
circular cone; a line and plane through the vertex are at right angles to each other
when they are polar line and polar plane in regard to the cone; and so two lines or two
planes are at right angles when they are harmonics in regard to the cone, that is, when
each line lies in the polar plane, or each plane passes through the polar line of the
other. A-plane through the vertex meets the cone in two lines, which are the “ circular
lines” in the plane and through the point; a line through the vertex has through it
two tangent planes, which might be called the ¢circular planes” of the point and
through the line; but the term is hardly required. Linesin the plane and through the
point, at right angles to each other, are also harmonics (polar lines) in regard to the
two circular lines.

2. Consider now a surface, and any point thereof; we have at this point a tangent
plane and a normal. The tangent plane meets the surface in a curve having at the
point a node, and the tangents to the two branches of the curve (being of course lines
in the tangent plane) are the “chief tangents” of the surface at the point.

3. The chief tangents are the intersections of the tangent plane by a quadric cone,
which may be called the chief cone; but it is important to observe that this cone is not
independent of the particular form under which the equation of the surfaceis presented.
To explain this, suppose that the rational equation of the surface is U=0; taking &,7, &
as current coordinates measured from the point as origin, the equation of the chief cone
is (£0,+70,4£9.U=0, where &, , z denote the coordinates of the point. But it is in
the sequel necessary to present the equation of the surface in a different manner; say
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we have an equation between the cordinates (#, 7, z) and a parameter 7 (r being there-
fore in general an irrational function of &, y, z), which, when'r=7,, reduces itself to U=0:
we have then 7=7, as the equation of the surface; and the corresponding equation of the
chief cone is (£9,+749,+40,)r=0; this is not the same as the cone (£0,4749,+ 59, U=0,
although of course it intersects the tangent plane in the same two lines, viz. the chief
lines; and so in general there is a distinct chief cone corresponding to each form of the
equation of the surface. But adopting a definite form of equation, we have a definite
chief cone intersecting the tangent plane in the chief tangents.

4. Observe that the equations U=0, r=r,, although each relating to one and the same
surface, serve to represent this surface, and that in different ways, as belonging to a
family of surfaces, viz. one of these is the family U=const., and the other the family
r=const. In order to represent a given surface as belonging to a certain family, we
need the irrational form of equation; thus 7 denoting the irrational function of z, 7, z

& 2 22

2
determined by the equation — +r+5%'+m=1’ we have r=0 as the equation of the

2 2 2
ellipsoid %-{-%—l—%:l, considered as belonging to a family of confocal quadrics.

5. Although at first sight presenting some difficulty, it is convenient to use the same
letter » to denote the parameter considered as a function of the coordinates, and the
special value of the parameter; thus in general the equation of a surface may be written
7(#, y, 2)—r=0 (in which form the first » may be regarded as a functional symbol), or
simply 7—r=0, viz. the first » here denotes the given function of (z, 7, z), and the
second 7 the particular value of the parameter. ‘

6. By what precedes we have through the point and in the tangent plane two circular
lines, the intersections of the tangent plane by the circular cone having the point for its
vertex.

We have also through the point and in the tangent plane two other lines, termed
the principal tangents, viz. the definition of these is that they are the double (or sibi-
conjugate) lines of the involution formed by the circular lines and the chief tangents,
or, what is the same thing, they are the bisectors (and as such at right angles to each
other) of the angles formed by the chief tangents.

- 7. The principal tangents may also be considered as the intersections of the tangent
plane by a quadric cone, called the principal cone; this being a cone constructed by
means of the circular cone and the chief cone, and thus depending on the particular
chief cone, that is, on the form of the equation of the surface. The definition is that
the principal cone is the locus of a line (through the point),such that the line itself, the
perpendicular (or harmonic in regard to the circular cone) of the polar plane of the line
in regard to the chief cone, and the normal of the surface are vn plano.

8. Analytically, taking, as before, (2, y, 2) for the coordinates of the point, and u, v, w
as current coordinates measured from the point as origin, then the equation of the cir-
cular cone is ¥’ +v*+w*=0; and taking Xu-4-Yv+Zw=0 for the equation of the tangent

212
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plane, and (e, b, ¢, f, ¢, KX, v, w)>=0 for that of the chief cone, then, if the line be
w:v:w=E:7:, we have

(e, . . XE, n, &Y u, v, w)=0

for the equation of the polar plane, and thence

w:v: w=aE+hn+98 : RE+bn+-18 2 gE+fn+cl

for those of the perpendicular, or harmonic in regard to the circular cone; also for the
normal u, v, w=X :Y : Z; whence, if the three lines are in plano, we have

£ s 7 ’ g =0
ae+hntgl, We+on+fE, gE+fE+ef
X , Y ., Z
as the equation of the principal cone. This is in the sequel written, for shortness, as
E, n, ¢ i:=0-
%, o, 85|
X, Y, Z

9. Consider any point P/, not in general on the surface, in the neighbourhood of the
point on the surface, say I’; then the point P’ has in regard to the surface a polar plane,
which plane, however, is dependent on the particular form of equation—viz. &', ¢/, 2 being
the coordinates of P, and U’ the same function of these that Uis of 2, ¥, 2, then the form
U=0 of the equation of the surface givesfor P’ the polar plane (ud,+vd,+wd,)U'=0;
and we may through P’ draw hereto a perpendicular (or harmonic in regard to the cir-
cular cone), say this is the normal line of P'. Then for points P’ in the neighbourhood
of P, when these are such that their normal lines meet the normal at P, the locus of I’
is the before-mentioned principal cone. The analytical investigation presents no diffi-
culty.

10. Taking P’ on the surface, the normal line of I’ becomes the normal at a conse-
cutive point P’ of the surface (being now a line independent of the particular form of
equation), and this normal meets the normal at P; that is, we have the principal cone
meeting the tangent plane in two lines, the principal tangents, such that at a consecutive
point P’ on either of these the normal meets the normal at P; viz. we have the principal
tangents as the tangents of the two curves of curvature through the point P.

The plane through the normal and a principal tangent is termed a principal plane ;
we have thus at the point of the surface two principal planes, forming with the tangent
plane an orthogonal triad of planes.

11. Iproceed to further develop the theory, commencing with the following lemma :—

Lemma. Given the line Xu -4 Yv+4Zw=0, and conic

(a, b, ¢, f, g, Y u, v, w)*=0,
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then, to determine the coordinates (w,, v\, w,), (¢ s, w,) of the points of intersection of
the line and conic, we have '

(ay .. XY —Zn, Z:—XE, Xy—YE)
= (8, 0, 4 Sw, ) (Bt + 105+ S w,),
or, what is the same thing, we have
(@, ... XY&—Zn, 72E—X8, Xp—YEP=0

as the equation, in line coordinates, of the two points of intersection. The proof is

obvious.
12. Making the equations refer to a plane and a cone, and writing throughout £, 7, §

as current point coordinates, the theorem is:—
Given the plane X¢4Y7;+Z¢=0, and cone
(@, b, C,f, ¢, kY&, n, §7P=0;
then, to determine the lines of intersection of the plane and cone, we have
(@, . . XY&—Zn, 75—XE, Xq—YE)*=0
as the equation of the pair of planes at right angles to the two lines respectively.
13. Denoting the coeflicients by (@), (6), &c., that is, writing
(a, .. XYS—"Zn, Z:—XE, X9—YE)
=((a), (8), (¢), (), (9), (R)XE, #, &),
the values of these are »
(e) = VZ* +cXY*—2fYZ,
@) = Xali —2¢7X,
(¢) = aY?+0X*—2/XY,
(f)=—aYZ—fX? +¢gXY+1XZ,
(9) =—0ZX +fYX—gY?* +1YZ,
(h) =— XY HfLX +gZY — 172

We have the following identities :—

(@)X +(%) Y+(g) Z=0,
(W)X +(8) Y+ (f)Z=0,
(9)X+(f)Y+(0) Z=0,

(@)D= Ps s (DB —=()(f), - - )=—(X Y2, 22, Y7, 7X, XY)g,
that is, (0)(¢)—(f)*=—X?¢ &c., where
e=(be—f2, .. gh—af, .. XX, Y, Z).
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Writing also :

aX+hY 497, W X+0Y +f7Z, gX+4fY +cZ=23X, 3Y, dZ,
and X2+Y2+Z2=V”; also a4-b+4c=w, then

(@) =(b+¢)V2—aX® + XX —-YOY — 707,
(0) =(c+a)V*—aY? —X0X+YoY—70Z,
(¢0) =(a+b)V:—aZd —XOX—Y3Y +737,
(f)=—fV* —oYZ+YZ 473Y,
(9) =—gV* —oZX 473X +X0Z,
(h) =—hV? —aYZ+X3Y4YoX.
14. T give also the following lemma :—
Lemma. The condition in order that the plane X¢+Y7s4Z£=0 may meet the cones
(A,B,C,F, G, HYE » ¢)°=0,
A, B, C,F, ¢, HYE 7, {)’=0
in two pairs of lines harmonically related to each other, is
(BC'+B'C—2FF, .., GH'+GH—AF —AF,. . XX, Y, Z)*=0.

Writing here
(A, .. XYs—"7n, 75—-XE, Xy—YE)
=((4), (B), (C), (F), (G), ())&, = &)
that is, (A)=BZ*+CY*—2FYZ, &c., the condition may be written
(A)A'+(B)B'+(C)C +2(F)F' +2(G) G+ 2(H)H'=0,
or say
((A), .. YA, ..)=0;
and we may, it is clear, interchange the accented and unaccented letters respectively.
15. I take »—r=0 for the equation of a surface, X, Y, Z for the first derived functions

of 7, (a, b, ¢, f, g, k) for the second derived functions. The equation of the tangent plane
at the point (z, ¥, 2), taking & », & as current coordinates measured from this point, is

X4 Yy4-28=0;
the equation of the chief cone in regard to this form of the equation of the surface is
(a, b, ¢ f, g, WY& 2, =0,
and the equaticu of the circular cone is £4-7*4-§*=0, or, what is the same thing,
(1,1,1,0,0, 0% 2, &)=0.

Imagine a quadric cone,

(Aa B,CF,G, I_IIEa 75 g)2=09
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such that it meets the tangent plane in the sibiconjugate lines of the involution formed
by the intersections of the tangent plane by the chief cone and the circular cone
respectively; that is, in a pair of lines harmonically related to the intersections with the
chief cone, and also to the intersections with the circular cone; the conditions are

((A), ... Xa, ..)=0,

(A)+B)+(C)=0,
viz. if only these two conditions are satisfied the cone will intersect the tangent plane
in the two principal tangents.
16. The principal cone, writing, for shortness,
aE+hn+g%, We+bn+f8, g&-+fn+cE=0%, o, %,

was before taken to be the cone

and

Ea. [/ ; =0.
o5, b1, ©F
X, Y, Z

Representing this equation by
(A, B, C, F, G, HYE, n, §)'=0,
the expressions of the coefficients are ' '

A=27Z —2Y,
B =9fX — 247,
C=29Y—-2fX,

F= hY— gZ —(b—c)X,
G= fZ— IX—(c—a)Y,

- H= ¢X— fY—(a—0)Z.
These values give
AX+HYHGZ=723Y—-YZ,

HX+BY+FZ=X3Z — 73X,
GX4FY+CZ=YX—-X3Y;

whence also
(A, .. XX Y, Z2)=0,
as is, in fact, at once obvicus from the determinant-form ; and. also

4 A+4-B4+C=0.
17. Writing, for shortness,

we find
Aa+Hh4+Gg=w(hZ —gY )+hZ —g¥,
Hh-+Bo+F f=o fX 1L )+FX—HZ,
Gy+Ff+Co=a(gY —fX)+gY —fX;
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whence
(A, ... Xea,...)=0.
18. By what precedes, we have

((A), ... Y& n £)P=0

for the equation of the two principal planes, where the coefficients (A), (B), &c. are
functions of A, B, &c. and of X, Y, Z, as mentioned above. These coefficients satisfy
of course the several relations similar to those satisfied by (@), (8), &c., and other rela-
tions dependent on the expressions of A, B, &c. in terms of @, 4, &c. and X, Y, 7.

19. Proceeding to consider the coefficients (A), (B), &c., we have then

(A)+B)+(C)=A4+B+C)V—(A, . XX, Y, Z),
(A)+(B)+(C)=0.

Observing the relation A +B+4C=0, the equations analogous to
(0)=(b+4c)V’—(a+b+c)X?+&c., are (A)=—AVH XX =YY —7Z07, &e.

that 1s

if for a moment we write X, 9'Y, 0'Z to denote the functions
AX+HY +GZ, HX+BY+FZ, GX4+FY 4 CZ.
But, from theabove values, X0'X 4 Y8'Y +Z8'Z =0, ortheequation is (A)= — AV? +2X¥'X,
that is = —AV24+2X(Z8Y —Y0Z). The equation for (F) is (F)=—FV>+YZ+ 7Y,
where YVZ473Y is =Y (YoX —X0Y)+Z(X0Z —7Z5X), viz. this is
=(Y*—72pX— XYY+ XZd7Z.
We have thus the system of equations
(A)=—AV? . +2X73Y  —2XYvZ,
(B)=—BV2 —2Y7ZX . +2XY?7Z,
(C)=—CV? 2YZ3X  —2XZY .
(F)==FV? +(Y*—Z7?)0X — XYY +XZ¥7,
(G)==GV>4XYoX +(22=X2pY — Y7237,
(H)=—HV*—X7ZsX +YZ5Y + (X2 —Y?)oZ.
20. We hence find
(A)a +(H)h+(G)g=—(Aa +Hhr+4Gg) V4 (Z5Y —Y8Z )pX +XP,
(H)o+(B)b +(F) f=—Hh+Bb +Ff )V +(X0Z —ZsX Y +YQ,
(G)g +(E) +(C)e =—(Gg+Ef +Cc )V (YoX - XY Z +ZR,
if, for shortness,
P=(gY —MPX +(aZi—gX Y+ (A X —aY)Z,
Q=(fY 020X+ (hZ—fX)0Y+ (X —hY )07,
R=( Y —fZPX+(gZ— cXPY +(f X—gY)VZ.
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Forming the sum PX +QY+RZ, the coefficient of 0X is found to be
=—Z(AXFY +fZ)+Y(gX+fY+Z), =—70Y 4+ YoZ;
hence the whole is
=0X(YOZ—Z3Y)+3Y (Z6X — X0Z) + 8Z(X8Y — YoX), which is =0, that is,

PX+4QY+4RZ=0.
21. Hence, adding, we find

((A), ... Xa, ..)=0;
viz. in this and the before-mentioned equation

(A)+(B)+(C)=0
we have the & posteriori verification that the cone (A, ...X&, 7, §)’=0 cuts the tangent
plane in the double lines of the involution.

In what precedes I have given only those relations between the several sets of quan-
tities «, a, (@), A, (A), &c. which have been required for establishing the results last
obtained ; but there are various other relations required in the sequel, and which will
be obtained as they are wanted.

The Conormal Correspondence of Vicinal Surfaces. Article Nos. 22 to 35.

22. We consider a surface U=0 (or »=r), and at each point P thereof measure
along the normal an infinitesimal length ¢, dependent on the position of the point P
(that is, ¢ is a function of #,9,2). We have thusa point P, the coordinates of which are

-Z", y,, Z’:$+§“a y+gB> Z+Q"/,
where «, 8, y are the cosine-inclinations of the normal, that is,

oy B: 7=%—, %’ ZV’ if V=JX2+Y2+Z2’

the locus of ' is of course a surface, say the vicinal surface, and we require to find
the direction of the normal at P/, or, what is the same thing, the differential equation
X'de' +Y'dy' +7Z!d? of the surface. 'We have

do'=(1+dg0) da+ dyeo. dy+ d.eo. dz,

dy=  dgB.drx4(1+dep) dy+  d.gB.dz,
A= dgy dut  dgy.dy+(1+dey) dz
0 = X de+ Y dy+ Z dz;

whence, eliminating dz, dy, dz, we have between da’, dy, dz' a linear equation, the
coefficients of which may be taken to be X', Y/, Z/. Taking these only as far as the
first power of g, we have

X'=X(1+deB+d.ey)—Yd.oB—Zd, ey,
MDCCCLXXIII. 2K
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or, what is the same thing,
(=X(1+d.g0+dgB+ d.oy)—Xd,ee—Yd,opf—7d 0y,
with the like expressions forY'andZ. 1 proceed to reduce these. The formula for X' is
=X{1+¢(datdp+dy)+eadg+PBde+yde}
———Q(Xd,oa-{-Yd,B—{—de'y)—(rxX-—l-—BY—I—'yZ)CZ,g.
23. I write, for shortness, 0=Xd,+Yd, +d., whence 8X, 3Y, 3Z=aX+hrY+¢Z,
WX A-0Y +f7Z, gX+fY-cZ, agreeing with the former significations of X, dY, d%;
also Vd,V, Va,V, Vd,V=3X, 8Y, 07, and VoV=X3X4Y0Y +7Z8Z. It is now easy to

form the wlues of

. XX oYX 73X
do, A5, dyy, viz. these are %——‘]3—, V=V \‘Z] g
o X?Y b Y3Y f Y
dya, dy@: dy'}/) Vv ‘v—*VS—: v—-Tﬁ«,
X8Z Y3Z c 737
dzaa dzB? dz79 %—-—‘V—s—’ -{7-—— V3 s VTV 5
and hence '
at+b+ec OV
3X Ve

Xdo+YdL+7d,y= ¥ X, =0,

1
ad.g+Bde+yd.e=x0,
aX+BY+yZ =V;
and we have
a+b+c 3V 1
with the like values of Y'and Z/. But we are only concerned with the ratios X': Y': #/;
whence, dividing the foregoing values by the coefficient in {}, and taking the second terms
only to the first order in ¢, we have simply
XL, Y, #1=X—-Vde, Y=Vdg, Z—Vd..
24. We may investigate the condition in order that the surface 4/, 7/, 2’ may be the
consecutive surface r+dr=r(x, 4, z). This will be the case of

r+ dr:w(w—i—ng, y—l—g%, 2+ %,) ,

that is, r4dr=r-4¢V, or 5-_-;51‘_;. This value of ¢ gives d,g= —-%12 de:_i% 0X, and

similarly 0,0= ——‘% Y, dpo=— i% 07 ; whence

X!, Y, Z=X+$0X, Y+{3Y, Z+50%,
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which is as it should be, viz. these are what X, Y, Z become on substituting therein for
&, 9, z the values @+ g, y-4¢f3, 2+ey.

25. 1 return to the case where ¢ is arbitrary, and I investigate the values of @, 4, . . .
for the point P’ on the vicinal surface; say these are o, ¥, &c., then we have ¢/ =d_X' &c.
The relation between the differentials may be written

de=(1—d.ge)da’'— dyee dy — dee d?,
dy= —def do/+(1—def)dy—  d.eB d,
dy= —dgydi'—  dey dy+(1—d.ey)d?,

and we thence have d,=(1—d,ex)d,—d,e3d,—d,eyd, &c.; hence
o ={(1—d.ga)d,—d.ofd,—d.eyd} (X—Vd.g)
=(1—dyge)a—deB.h—dey.g—d.(Vd.e)
=a—e(ad.o+hd.B+gd,y)
— (aw+hB+gy)d.e
1 o
-5 0Xd,e—Vdie;
and similarly, f'=d,Z' (or d,Y'), that is
J'=f—elgd2+fd,6+cdy)
—(go+/B+ey)dye
1
—v 0Yd.e—Vd,d.e.

26. Completing the reduction, we find

aw=b—z (X)2\ 2 \
! ( - ) VBXdo—-Vd,g,

a =a——g A V8

y =b—g<””"‘f"“~—-(3‘,‘2 )_%Yd o— Vi,
— 2

cl=0_e(6w ‘;l b_(?)) _Bydzg Vd;g,

say these expressions are ¢ =a- Aq, &c.
2x2
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27. Taking &, #, & for the coordinates, referred to P as origin, of a point on the given
surface near to P, and #, #, &' for the coordinates, referred to P' as origin, of the corre-
sponding point on the vicinal surface, the relation between &, 7, &' and £ 2, & is the
same as that between da', dy, d?' and dw, dy, dz; viz. we have

(=81 —dpa)—dee.7 —deal,
n=—d,eB.8 +(1—dygB)—d.ep.7,
{=—dgy. & —dgy.d  +(1—dey)s’;
or, conversely,
=(1+d.gx) £+ dyeor . n+d.ee . 8,
d=  dgB.E+(1+deB) +d.gB.5,
= dayEt+  dgy.nt+(14+dey)s

say £, 7, §'=8+ AL, 1+ An, §+AZ; hence

X +Y% +78=(X—Vd,g)(t4 A%)+&e.
=XE+ Y9448
+XA:+YA74+ZAG
—V(&dg+nd,e+8d.e),
where second line is
(Xa+Yp+2Zy)(Edog+ndge+Ed.c)
+e{(Xda+ Y L+2Zdy)e+(Xdu+Yd,B+2Zd,y)n+(Xda+-Yd.f+2d.y)55

But
Xd - Y p+ Ty = — s X =0,
Xde+Yd[+2Zd,y =0,
Xd,o+Yd,B+7Zd,y =0,

or second line is=V(éd,¢ +7d,e+¢d.¢) ; and we have therefore

XE+YY + 718 =XE+Yr+78.
‘We require
(AL B,C,F, G, T'YE, 4, §); viz, to the first order in g, this is
:(Ala .. Iga Ny ;)2
LA, .. XAL A, ALYE 7, 8)-

98. Here second line is

2 (AL +Hy+ GE) b (HE+ Br+ F2) An-+ (GE+Fr+ C5) AL}
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but
Af+Hy+Ge=12d% — Y+

> N,

a4 R
=

-
N
-

Hg+ By +F¢ =Xd¢ — 7% +

mMaﬂ
,.4@
N Th ey NWR

-
N
-

Gt +Fy +08 =Y +Xdr+|

<
~
(o)

oA
i
N

whence term in { } is

AL An AL 4| aDE+RAn+gAL, RAE+DArHAS, gAE+fAT+CAL |,

¥, ., ¥ X , Y - 7
:Xa Y-,'Z, g s 7 s 2;

which might be written
| AE, An, AL |—| BAE, 3An, AL

35757793; Ea”,é’
X, Y, 7Z | |X, Y, Z

but it is perhaps more convenient to retain the second term in its original form.
29. As regards the first line, we have

A'=217—24'Y!
=2(h+ AR)(Z—V3,0)—2(g+ Ag)(Y — V)
=A+2ZAW—Y Ag)—2V(1d o— gd,¢),

with similar expressions for the other coefficients. Attending only to the terms of the
first order, we thus obtain

A'=A+2(Z A=Y Ag)—2V( hd,—gd,)e,
B'=B+2(XAf—7 AL)—2V(fd,—hd,)e,
O=0+2YAy—XAf)—2V(gd,~fd.)e,
F =F +YAh—7 Ag—X(Ab— Ac)—V(kd,—gd,— (b —c)d.)e,
G' =G +7Z Af—XAh—Y (Ac— Aa)—V(fd,—hd,— (c—a)d,)e,
H'=H+XAg—YAf—7 (Aa—Ab)—V(gd,— fi,—(a—b)d.)e,



242 PROFESSOR CAYLEY ON CURVATURE AND ORTHOGONAL SURFACES.

say these are A'=A+0A, &c., where ¢ is a functional symbol; we thus have

(AI9 .. 'Iglo ", é”)2:(A, o Iéa 7y §)2+(9A’ o Ig’ 7 §)2+2(A’ .. IE’ ) EIAéa Ay, AZ),

which, for shortness, I represent by

=(A .- XE m P+ (A X 7w 8)s

and I proceed to complete the calculation of the coefficients A", B', &e.
30. We have

A'"=fA+coeff. £ in
2[(AE+Hr+GYAE+(HE+By+F8)An4-(GE+F1+-CE)AT]
=0A+2(Ad,en+Hd B+ Gd,zy),
that is
A'=6A 42 (AX+HY +GZ)d,¢

+26(Ad et H B+ Gily),
where coeff. 2¢ is

_Ac+Hh+Gy (AX+HY+GZ)X
= v - \E

:%{w(ﬁZ —gY)+7Z _gY} NI —Yo7).
31. And similadly, |
F' = 0F + (Ha+- BA+ Fy)dg+(Ge+ FB+Cy)d,e
+¢{(Hd.2+Bd p+Fdy)+(Gdp+Fd S+ Cdy)}
=P+ 4 {HX + BY + FZ)d.g+(GX + FY + CZ)d,g}

Hg+Bf+Fe (HX+BY+F2)Z
Toy v \E
Gh+Tb+Cf (GX+FY+ CZ)SY}
+ VvV - V8 ’

Gh+Fb+Cf= o(hY —0X)+2Y —0X+oX+aX+iY +7Z,
Hy+Bf+Fo=—w(g7—cX)—gY + X —aX—aX—1Y —gZ.

Sum is w{hY — gZ — (b—¢)X} + %Y —gZ— (b —¢)X, which is=aF+AY — gZ— (b —¢)X :

hence

Y
F' = F 4 (X3Z—75X) (%/—dzg - ev%z—) (DX —X3Y) (% dyg_-?VT)

+ i (o BY —gZ—(B—0)X}.
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32. We may write
A'=0A+2 (g5
1 g3Y

)(ZBY YoZ)+ £ (oA +A),
B'=¢B4-2 (V 0 — >

(X3Z—Z3X)+5 (4B+B},
c":ao+2( g—»V3>Y3X X3Y)+£ (wC+C,
F_é}:‘-{—( d.o— )(st ZBX)+( 98Y>(YBX —XOY) 4+ {aF+ T,
"’_0G+( d,,g_g—a?()(YaX XBY)+(~— o— V3>(Z3Y—YBZ)+{”,~{0;G+G},

H'=(H+ (V ¢ QSY) (ZBY—-YBZ)—{—(V(Z, __€3X> (X¥Z—Z3X) + & (o H + 113,

in which equations A, B, &c. are the like functions of «, b, &c. that A, B, &c. are of

a, b, &c.; viz. A=27—29Y, &e.
The value of dA is

(JA-::ZZ({——%(kw+7;)+{;33XBY}—:—](BYdag—l—BXdyg)—dedyg)

—ay <{ —&(gu+9) +{;’—33zax} — e clwg—l—BXdzg)—dedzg)

—2V(hd.—gd,)e,
which is

—{(wA+3) + 28X (ZDY — VA7)

_ :V}_((Zdy_ Yd,)e —2V(hd,—gd,)e
— 2 (I —YO7)d e —2V (7d,— Y L) z.

Hence the value of A" is equal to the last-mentioned expression, together with the
following terms :—

& (wA+K)— 2 IX(DDY — YVO7) + 5 (WY — o) dg,

which destroy certain of the foregoing ones; viz. we have

A= (279" ) e~ (Vh_m‘) 4o —2V(Zd,—Yd.)d,q.
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83. Similarly, the value of 6F is
0F=Y< & (ha+F) + 5 OXBY —  (PY e+ X g)-—-dedyg)

_ z(.__- (gok-9)+ 55 DTIX — 5, (g +dXd,g)— Vd dzg)

—X(=§ 10~ o)w+b—;+9 e

Yd,g-+5 ¥idg— Vd;g-;-volzg)
—V(kdy—gd,—(b—c)dx)g,

which is

=& (—Fu—T)+ 52 (XVZ—Z3X) + 55 (VX —XY)
+{_%,-(Y5Y_ZBZ)+V(6-0)}@
+{—§ax'+?\§a¥ —Vh }d,/g

+{ IX+25Y 47y }dzg
+(=VYdd,+VZdd.+VXd,—VXd)e.
Hence F" is equal to the foregoing expression, together with the following terms:-
+ (Bt F) =42 (XoZ—Z0X) — S (VIX — X3Y)
i (VX —X3Y)dyg + & (XE—ZX)deg,

which destroy certain of the foregoing terms; viz. we thus have

= { (VY —Z3Z) 4V (5— 0)} xg-l—{ BY—-Vlz}dyg+{-—?‘S,8Z——Vg}dzg

+V(=Yd.d,+7Zd.d,+Xd—Xd2)e.
34. 'We thus have

A= (Vg Z%X) d,0—2 <Vk—¥%)—§) A0 +2V(—7Zd,d, +Yd.d,),
B = 2<Vf—§8—¥) +2<Vh———¥) dig+2V(—Xd 4, +7d.d,)e,

O =+2(Vf—") de—2(Vy—7" ) g +2V(— Ydd.+Xd,d)e,
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F = {V(b—c)— (VY — ZBZ)} o— (Vh——l[) y@+(V9—§‘o“Z)d°
+V(=Ydd,+Zd,d,+Xd;—XdL)g,

&= (Vi) de+V{(e—0)—5 (77 XBX)} — (V=) e
+V(—Zd,d,+Xd,d,+YdE—Yd&)e,

H'= (Vg—-@) ze—<Vf—@() yg—l—{V(a—b)— (X3X — YBY)}

+V(—Xd,d,+Yd.d,+Zd:— L.

35. It will be recollected that we have X'# Y7 +7Z'8'=X&+Yy+7Z4; by what
precedes it appears that for the given surface the principal tangents are determined by
the equations

(A, . X& 9 &r=
X2+ Y42 =0,
and that the lines which (in the tangent plane of the given surface) correspond to the
principal tangents of the corresponding point of the vicinal surface are determined by

the equations
(Aa . I‘Sa Ny 5)2+(A", . I%, Ay 5)2:0’
Xe+Yr+75=0.

Condition that the two surfaces may belong to an Orthogonal System.
Article Nos. 86 to 41.

86. The'condition in order that the two surfaces may belong to an orthogonal system
is that the principal tangents shall correspond, or, what is the same thing, the lines which
(in the tangent plane of the given surface) correspond to the principal tangents of the
vicinal surface must be the principal tangents of the given surface. When this is
the case the plane and cone X&4Yz+Z78=0, (A", .. . Y& », §)’=0 intersect in the
principal tangents, and this is therefore the required condition.

The plane X£+Yz+ZL=0 meets the cone (A",..Y% 7, §)’=0 in the principal
tangents, that is in a pair of lines harmonically related to the circular lines and also to
the chief tangents. Forming then the coeflicients (A"), (B"), (C"), (¥"), (G"), (H")
from A”, &c. in the same way as (A) &c. are formed from A, &ec., that is, writing
(A" =B"2*+C"Y*—2F"YZ, &c., the conditions are

(A)4(B") +(C")=0,
((A"), .. .Xa, ...)=0, or, what is the same thing,
(A" ... (@), .. .)=0.

The former of these, as about to be shown, is satisfied identically ; we have therefore

the second of them, say (A", . .Y(a), . .)=0 as the required condition.
MDCCCLXXIII. 2 L
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37. We have
(’L&II) + (B//) + (CN) — (4&" +B.’I+ C”)V2 o (AN, . .IX’ Y, Z)ﬁ,
A'+B'4-C :%{(ZBY——YBZ)dmg +(XZ— 7Z5X)d e+ (YBX —X0Y)d.g}.
Forming next the expr‘essions of AYX+4H"Y+4G"Z &c., and, for convenience, writing
down separately the terms which involve the second differential coefficients of ¢, we have
A'X+H"Y +G"Z=
Ao V(Wl—g¥)+d o[ VIZ—ZV 4+ V(9X—aZ) |+ d.o — (VOY —YV)— V(X —aY)],

H'X+B'Y +F'Z=
d.a[ —(VL—ZV )=V (f Y = bZ))+ dyg .V (f X = hZ)+ o[ (VIX —X3V) +- V(IY —5X)],

G'X+F"Y + Q7=
d.e[VOY =YoVA-V(fZ—cY) ]+ dye[ —(VIX = X8V)—=V(gZ~cX)]+d.e . V(9Y —FX),
where 0V stands for % (X8X4Y?Y +7Z8Z), and where the three expressions contain also

the following terms respectively :—

{ . —YIZE +YIE+(Y'—2)dd+ - XYdd,—  XZdd,)e,

{ ZX& . —IX#—  XYddA@=X)dd,+  YZdd,e,
(XY@ +XYd . 4+ XZd—  YZdd+(X—Y)dd,}e.

Multipiying by X, Y, Z, and adding, the terms which contain the second differential
coeflicients disappear, and we obtain ‘ _
A" XX Y, ZP=2V{(ZY —Y0Z)d g+ (X7 — ZX)d,e 4+ (YIX —X3Y)d 6] 5
so that, attending to the above value of A" +B"4-C", we have the required equation
(A)+(B")4 (C")=0.
38. Proceeding now to form the value of (A", .. .Y(a), . . .), that is
Al(a)+B"(0)+C"(c)+2F"( ) +2G"(9)+2H" (1),
it will be shown that the terms involving the first differential coefficients of ¢ vanish of

themselves; as regards those containing the second differential coefficients, forming the
auxiliary equations

(A)=2(M7Z —2(g)Y,
(B)=2(f)X—2(h)Z,

(O)=2(9)Y —2(f)X,
(F)=(W)Y —(9)Z —(()—())X,
(@D=(f V=W)X —((c)— ()Y,
(H)=@)X = ()Y =((@)—(8))Z,
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we find without difficulty that the terms in question (being, in fact, the complete value
of the expression) are

=V((A),...Xd, d, d.)e.
39. Asregards the terms involving the first differential coefficients, observe that the
whole coeflicient of 3,¢ is

' ZSY)

—200)(Vf =

+20) (V=)

+2(f) (V(&—c)—%;(YBY—ZBZ))

+2)(Va—y")

—2)(Vo—5),

=2V{(9h+(f)o+(0)g—((B)g+R)f+(f )e)}
+%{Z((h)3X+(6)3Y+(f)3z)—Y((9)3X+(J")5Y+(G)BZ)}.

40. The reduction depends on the following auxiliary formule :(—

which is

Aa) 1) +g(9)=VIV—XEX, | aW)+hW)+9(f) = —X5Y, | alg)+M(f)+9(c)= —Xoz,
h ” 'l"]Z » +f »n = _YSX, h D) +b D) +f” =V§V’_Y§Y5 h D) +b D) "f"',fn: -YEZ,
,(/ ’ "!‘f” +0 9y — _Z§X, I !] 29 +f” + c » = —Z§Y9 } .q 13 +f. 99 +C,,=V§V—Z§Z,

where, for shortness, I have written X, 3Y, 8Z to stand for «X —|—7LY +9Z, KX+ 1Y +1Z,
gX+FY 407 respectively, and V3V for X3X+Y3Y +7Z8Z, (=q, .. XX, Y, Z)-.
From these we immediately have
(@)X +(APY +(gPZ=V(X5V -V3X),
(WX A (BPY + (FPZ=V(YSV—V3Y),
(@PXA(FPY +(c) dZ=V(Z5V —V57).

Hence, in the coefficient of d,g, the first line is

=2V( —Y3Z +Z§Y),
and the second line is
:—QV{VZ(Y_BV— VEY) —VY( Z_BV—-VEZ) ¥, :QV(YSZ —_ Z—BY) ;

so that the sum, or whole coefficient of d,¢, is =0. Similarly, the coeflicients of d,e and
d.e are each =0.
212
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41. We have thus arrived at the equation
((A) .- Xds, dyy d.)g=0

as the condition to be satisfied by the normal distance ¢ in order that the given surface
and the vicinal surface may belong to an orthogonal system, viz. this is a partial differ-
ential equation of the second order, its coefficients being given functions of X, Y, Z,
a, b, ¢, f, g, h, the first and second differential coefficients of » (where r=r(2, , z) is the
equation of the given surface).

The equation, it is clear, may also be written in the two forms

(A, .. X7d,—~Yd, Xd,—7d,, Yd,—Xd,)Ps=0,

and
P R Q , R ¢=0,
aP4-1Q+gR, IP+0Q+fR, ¢P+fQ+cR
X " Y , Z

if, for shortness, P, Q, R are written to denote Zd,—Yd,, Xd,—7d,, Yd,—Xd, respec-
tively, it being understood that in each of these forms the d,, d,, d. operate on the ¢ only.

Condition that « family of surfaces may belong to an Orthogonal System.
Article Nos. 42 to 49.

42. We pass at once to the condition in order that the family of surfaces
r—r(z, y, 2)=0

may belong to an orthogonal system, viz., when the vicinal surface belongs to the family,

. 1 e s
we have ¢ proportional to ( «/ﬁ%’ﬁ—?)’ and the condition is

1
(A), ... Xd., d,, d.05=

where 7 is a function of (&, g, z), the first and second differential coefficients of which
are X,Y,Z, @0, ¢, f,¢, h; and the equation is thus a partial differential equation of the
third order satisfied by 7. The form is by no means an inconvenient one, but it admits

of further reduction.

o 2L 1 1 1 1 o 1y 1. e

43. We have d, > d, v d. equal to —5 0X, —y50Y, —3 Z respectively, and
thence

di%_ ————(a 414 g*+-oa) —I-V({,(BX)2

or, as these may be written,

- - 3
2= — s (aw—w+ a+30) + (X,

1 1 - . 3
dydzv: — ﬁ(fw —|-j —|—3f) +v55YBZ,
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with the like values for d;—lv, &c. - Substituting, the equation contains a term multiplied

by @, viz. this is
—g5e((A), - Xa, ),
which vanishes; and a term multiplied by , viz. this is
yol(4)+(B)+(0)),

which also vanishes. 'Writing down the remaining terms, and multiplying the whole
by —V?, the equation becomes

((A), X . )+ ((A), - X0, - ) — oo (A), - JOX, BY, 3Z)=0.
44. The last term admits of reduction; from the equations
(A)=—AV24-2X78Y —2XY?Z, &c., we find
(A PRX+(HPY (G = —VH(ASX +HOY + GOZ)+VOV(Z Y —YoZ),
(HPX 4+ (BPY +(F pZ=— V}(HsX 4B Y + FoZ)+ VoV(X0Z — 7 0X),
(GPRX+(F PY+H(C PZ=—=V(GoX+F3Y+CdZ)+ VaV(YX —X3Y),

and hence

((A), . X, 0Y, 0Z)=—V*(A, .. . )3X, 3Y, 0Z)*;
wherefore the equation becomes

((A), IOZ C)H((A), e . )+ 3(A, L XX, Y, 3Z)2=0.
45. It will be shown that we have identically

(A), .. Xa,..)=—(4, .. 0X,dY, 0Z)=2| X, dY, ¥

X, Y Z
0X, Y, °OZ
The partial differential equation thus assumes the form

(A), . Xa, . . .)+Q=0,

where  may be expressed indifferently in the three forms,

=424, .. X7 ..)

=+2(A, . JOX, 3Y, ¥ZY,

——4| X, Y,
X, Y, Z
X, 5Y, 5z

46. Taking the first of these, the partial differential equation is
((A), .. .Xoa, . .)=2((A), . .Xa,...)=0;
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or, written at full length, it is

(A)da-+(B)3b4(C)c+2(F)0f42(G)dg -+ 2(H)oh
—2{(A)e +(B)b +(C)e +2(¥)f +2(G)g +2(H)h}=0,
where the coefficients are given functions of X, Y, Z, a, b, ¢, 1 g, b, the first and second
differential coefficients of 7 ; and ¢ is written to denote Xd,+Yd,+Zd..
47. It remains to prove the above-mentioned identities.
To reduce the term (A, . .JOX, 0Y, 8Z)%, we have
AMX + DY +GOZ
= A(aXA4IY +¢Z)+-HAX+ Y +f2)+G(9X+fY +cZ)
= X{ oM —gY)+HWt —gY} )
+Y{—o(fY—0Z)—(fY—07)—wl—071}
+Z{ o(fZ—0Y)+fZ—cY +aoY+3}
= (7Y —YdZ)+(Z3Y —YOL)+(Z3Y —YoZ),

that is
ANX +IRY + GOZ=w(ZDY —YZ )+2(Z3Y —Y5Z ), and similarly
X +BYY + o7 =w(XdZ — Z3X )+ 2(X8Z — 75X,
GYX +F3Y 4+ OV =o(YOX —X3Y) +2(YoX — X3Y),

whence

(A, . 03X, Y, 0Zp=—2| X, JY, o7
X, Y, Z
X, 5Y,

48. Now, from the equations AX-+HY +GZ=70Y —=YdZ, &c., we have for the value
of twice the foregoing determinant

2 det.=2{(aX+AY+ gZ )(AX—]—HY—[—GZ)
+(hX40Y + FZ)(HX+BY +F7Z)
+(GX+fY+dZ)(GX +FY +CZ)} ;

and subtracting herefrom the function ((A), . . .Y, . .), which is

= (BZ* +CY*—2FYZ Ja
+(CX? - AZ? —2GZX )G
+(AY’+BX?—2FYZ )o

+9(—AYZ —FX> +GXY+HXZ)F
+2(—BZX +FXY—~GY* +HYZ)y
+9(—CXY+FXZ +GYZ —HZ* )i,
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the difference is found to be

= af(A,. XX, Y, Z)+AV?}
+04(A, . XX, Y, Z)+BV?
+ci(A, . XX, Y, Zp4+CVEE
+2F{(A+B+C)YZ+ FV?}
+27{(A+B+C)ZX + GV}
+20{(A+B+O)XY+HV?},
which, on account of (A, .. XX, Y, Z)}=0, and A4B4-C=0, reduces itself to
(A, ..Xa, ...). V2
49. We have
Aa+Hh+Gg= a(2hZ—29Y)
HI( gX— FY—(a—1)2)
+9( fL— hX—(c—a)Y)

= X(hg—hg)
+Y (ag— ga—(ga-+Fh+cg))
+Z (ha— ah+(ha+ bh-+17)) ;

or observing that in the coefficients of Y and Z the second terms each vanish, this is

Aa+Hh4+Gy=X(hg—gh)+Y(ga—ag)+7(ah—ha), and similarly
Hi+Bo+Ff=X(bf— F0)+Y(fh—hf)+ Y (ho—bh),
Gy+Hh+F e =X(fo—cf)+Y(cg —go)+Z(gf — f9)-
Adding these equations, the coefficient of X is the difference of two expressions each of
which vanishes; and the like as regards the coefficients of Y and Z; that is, we have

(A, . I‘Z . .):0;

and consequently
2| oX, oY, 7 =((A), 3{?(, L)=—(4, .. 00X, 3Y, 7)),

X, Y, Z
X, Y, oZ

the required relation.



